تبلیغات
دانلود رایگان کتاب های ریاضی، جزوه ریاضی ، تفریحی ، بازی،سرگرمی ، سخن بزرگان - مطالب مطالب ریاضی

شارژ ایرانسل

فال حافظ

  ..  
   
   
  منوی اصلی
لینکهای سریع

  موضوعات
بازی انلاین ریاضی
توایع مختلط
روشهای مطالعه
فیلم و کلیپ
ابتدایی
خودرو
مشخصات فنی خودرو
+ریاضی راهنمایی+
سرگرمی و ریاضی
بازی های جالب انلاین ریاضی+
ازدواج
سبک زندگی
تست روانشناسی
آموزشی
دکتری
نمونه کارنامه
منابع و دروس رشته ها برای ارشد
هوش
جملات الهام بخش
پزشکی
تکنولوژی و ای تی
انیمیشن
خواندنی های جالب
عاشقانه
زنگ تفریح(اخبار و اطلاعات)
زنگ تفریح ریاضی(خنده بازار)
عکسسسسس WOW
المپیاد
تحقیق در عملیات
++دبیرستان++
حساب دیفرانسیل و انتگرال
معادلات دیفرانسیل
ریاضی مهندسی
ریاضی عمومی
مبانی علوم ریاضی
فلسفه ریاضی
آنالیز مختلط
انالیز ریاضی
انالیز حقیقی
آنالیز عددی
ریاضیات گسسته
ترکیبیات
نظریه گراف
نظریه اعداد
امار و احتمال
هندسه
هندسه هذلولوی
جبر
جبر مجرد
توپولوژی
مفاهیم پایه ریاضی
معماهای ریاضی
فرمول های ریاضی
مثلثات
مقالات ریاضی
دانسنی های ریاضی
کاربرد ریاضیات
رشته ریاضی
نرم افزار های ریاضی
عجایب ریاضی
مطالب ریاضی
اموزش نرم افزار های ریاضی
++کنکور++
نرم افزار موبایل
ازمون های بین المللی
سری فوریه و تبدیل لاپلاس
جملات مشاهیر و بزرگان
سوالات ریاضی دوستان

 

آرشیو ماهانه
تیر 1395
دی 1392
شهریور 1392
تیر 1392
خرداد 1392
اسفند 1391
بهمن 1391
دی 1391
آذر 1391
آبان 1391
مهر 1391
شهریور 1391

.:: لیست کامل آرشیو ماهانه ::.


        لینک دوستان

  نظریه آشوب :
مطالب مرتبط: مطالب ریاضی

نظریه آشوب :

طی 20 سال گذشته، در حوزه ریاضیات و فیزیک مدرن، روش علمی و تئوری جدید و بسیار جالبی به نام "آشوب" پا به عرصه ظهور گذاشته است. تئوری آشوب، سیستمهای دینامیکی بسیار پیچیده ای مانند اتمسفر زمین، جمعیت حیوانات، جریان مایعات، تپش قلب انسان، فرآیندهای زمین شناسی و ... را مورد بررسی قرار می دهد. انگاره اصلی و کلیدی تئوری آشوب این است که در هر بی نظمی ، نظمی نهفته است. به این معنا که نباید نظم را تنها در یک مقیاس جستجو کرد؛ پدیده ای که در مقیاس محلی، کاملا تصادفی و غیرقابل پیش بینی به نظر می رسد چه بسا در مقیاس بزرگتر، کاملا پایا (Stationary) و قابل پیش بینی باشد
نقاط تشابهی بین تئوری آشوب و علم آمار و احتمالات وجود دارد. آمار نیز به دنبال کشف نظم در بی نظمی است. نتیجه پرتاب یک سکه در هر بار ،تصادفی و نامعلوم است، زیرا دامنه محلی دارد. اما پیامدهای مورد انتظار این پدیده ، هنگامی که به تعداد زیادی تکرار شود، پایا و قابل پیش بینی است. وجود چنین نظمی است که باعث زنده ماندن صنعت قمار است، و گرنه هیچ سرمایه گذاری حاضر نبود که در چنین صنعتی سرمایه گذاری کند. در واقع، قمار برای کسی که قمار می کند پدیده ای تصادفی و شانسی است(چون در مقیاس محلی قرار دارد) و برای صاحب قمارخانه، پدیده ای قابل پیش بینی و پایا است (چون در مقیاس بزرگتر (global)، این پدیده دارای نظم است).
همین جا می توان به مصادیقی از این تئوری در حوزه علوم انسانی اشاره کرد. بسیاری از وقایع تاریخی که در مقیاس 20 ساله ممکن است کاملا تصادفی و بی نظم به نظر برسند، ممکن است که در مقیاس 200 ساله، 2000 ساله یا 20000 ساله دارای دوره تناوب مشخص و یا نوعی نظم در علتها باشند(و البته نه لزوما به گونه ای که مارکس معتقد است!!!). در نگرش رفتارگرایی در حوزه روانشناسی، در واقع با نوعی تغییر مقیاس، به نظم رفتاری و قوانین آن دست می یابند و امکان پیش بینی و یا اصلاح اختلالات رفتاری فراهم می گردد، و الا اگر رفتارهای منفرد افراد مد نظر باشد چیزی جز چند رفتار تصادفی و غیرقابل پیش بینی نخواهد بود. روش علمی (متدولوژی) که این تئوری در اختیار ما قرار می دهد، تغییر مقیاس در نگاه به وقایع است به گونه ای که بتوان نظم ساختاری آن را کشف کرد. صد البته، نگاه جدید این منطق به نظم، بسیاری از جدالهای سنتی در مورد برهان نظم و ... در فلسفه را نیز مورد چالش قرار می دهد.
موضوع جالب دیگری که در تئوری آشوب وجود دارد، تاکید آن بر وابستگی (یا حساسیت) به شرایط اولیه است. بدین معنی که تغییرات بسیار جزیی در مقادیر اولیه یک فرآیند می تواند منجر به اختلافات چشمگیری در سرنوشت فرآیند شود. مثال ساده زیر شاید جالب باشد :
اگر مسافری 10 ثانیه دیر به ایستگاه اتوبوس برسد نمی تواند سوار اتوبوسی شود که هر 10 دقیقه یک بار از این ایستگاه می گذرد و به سمت مترویی می رود که از آن هر ساعت یک بار قطاری به سوی فرودگاه حرکت می کند. برای مقصد مورد نظر این مسافر، فقط روزی یک پرواز انجام می شود و لذا تاخیر 10 ثانیه ای این مسافر باعث از دست دادن یک روز کامل می شود. بسیاری از پدیده های طبیعی دارای چنین حساسیتی به شرایط اولیه هستند. قلوه سنگی که در خط الراس یک کوه قرار دارد ممکن است تنها بر اساس اندکی تمایل به سمت چپ یا راست، به دره شمالی یا جنوبی بلغزد، در حالی که چند میلیون سال بعد، که توسط فرآیندهای زمین شناسی و تحت نیروهای باد و آب و ... چند هزار کیلومتر انتقال می یابد، می توان فهمید که آن تمایل اندک به راست و چپ به چه میزان در سرنوشت این قلوه سنگ تاثیرگذار بوده است. مثال بسیار آشنای دیگر، وابستگیهای جسمی و روانی انسانها به شرایط لقاح و مسائل ژنتیکی است.
اگر چه چنین وابستگی آشوبناک (Chaotic) به شرایط اولیه را می توان در بسیاری از وقایع جامعه شناسی (از جمله انقلابها) و روانشناسی و .. پیجویی کرد، لکن به جز یک حوزه(که پایینتر به آن اشاره خواهد شد)، تاکنون توجه خاصی بدین مسئله صورت نگرفته است. به این معنا که اغلب برای تمام طول حیات یک پدیده، وزن یکسانی از نظر تاثیرگذاری عوامل درونی و بیرونی در نظر گرفته می شود، در حالی که تئوری آشوب، نقش کلیدی را در شرایط و المانهای مرزی اولیه می داند. ادوارد لورنز، دانشمند مشهور هواشناسی، سالها پیش جمله مشهور خود را که بعدها به " اثر پروانه" (Butterfly Effect) مشهور شد، چنین عنوان کرده است: " در یک سیستم دینامیکی مانند اتمسفر زمین، آشفتگی بسیار کوچک ناشی از به هم خوردن بالهای یک پروانه می تواند منجر به توفانهایی در مقیاس یک قاره بشود". در بسیاری از وقایع جامعه شناختی و سیاسی نیز می توان به جای پیجویی عوامل بسیار پیچیده و نادیده گرفتن عوامل به ظاهر ساده، با جدی گرفتن عوامل به ظاهر بی ارزش به تحلیل صحیحی نسبت به آن واقعه رسید.

برچسب ها : نظریه اشوب-


نوشته شده توسط M R در دوشنبه 27 خرداد 1392

نظرات (

  اثباتی جالب و بسیار اسان برای پارادکس راسل
مطالب مرتبط: مطالب ریاضی



اگر مجموعه ها را به دو دسته ی متعارف و نامتعارف تقسیم كنیم (مجموعه هایی را كه خودشان عضو خودشان نباشند متعارف گوییم مثل مجموعه ی اعداد طبیعی و مجموعه هایی را كه خودشان عضو خودشان باشند نامتعارف گوییم مثل مجموعه ی مفاهیم انتزاعی كه خود این مجموعه یك مفهوم انتزاعی میباشد پس عضو خودش هم هست )حال اگر مجموعه ای مثل مجموعه ی Aرا در نظر بگیریم در اینصورت این مجموعه یا متعارف است یا نا متعارف .اگر مجموعه ی Aرا متعارف فرض كنیم دراین صورت باید یكی از عضو های خودش باشد (همه ی مجموعه های متعارف را در مجموعه یAجمع كردیم )ولی اگر مجموعه ی Aیكی از عضوهای خودش باشد طبق تعریفی كه كردیم باید نا متعارف باشد . اگر هم مجموعه ی Aرا یك مجموعه ی نامتعارف فرض كنیم باید بتواند یكی از عضو های خودش باشد در حالی بین عضو های مجموعه ی Aتنها مجموع ه های متعارف وجود دارد و یك مجموعه ی نا متعارف نمی تواند عضو ان باشد

در مورد مجموعه ی Aبه یك تناقض منطقی برمیخوریم این مجموعه نه میتواند متعارف باشد نه نا متعارف و این همان پارادكس راسل میبا شد كه  میگوید مجموعه ی تمام مجموعه وجود ندارد


برچسب ها : اثبات پارادوکس راسل-پارادوکس راسل-ریاضی محض-ریاضی کاربردی-


نوشته شده توسط M R در دوشنبه 27 خرداد 1392

نظرات (

  اصول اقلیدس و اصل توازی
مطالب مرتبط: آموزشی هندسه مطالب ریاضی

1-    از هر دو نقطه متمایز ، یک و فقط یک خط می گذرد .

2-    هر پاره خط AB را می توان به اندازه پاره خط BE که با پاره خط CD قابل انطباق است ادامه داد .

3-    به ازای هر نقطه و هر پاره خط دلخواه ، دایره ای به مرکز آن نقطه وشعاع مذکور وجود دارد .

4-    همه زوایای قائمه با هم برابرند .

5-    اصل توازی :

چهار اصل اول همواره مورد توافق ریاضیدانان بوده اند .  اما اصل توازی تا قرن 19 مورد بحث و جدل فراوان قرار گرفته است . تلاش برای اثبات آن و ارائه صورتهای مختلفی از آن صور ت گرفته است . که همین تلاشها باعث ایجاد و بسط هندسه های نااقلیدسی شده است .

تعریف (توازی ):

دو خط با هم موازی اند هرگاه همدیگر را نبرند ، یعنی نقطه ای پیدا نشود که بر هر دو خط واقع باشد .

اصل توازی : به ازای هر خط و هر نقطه غیر واقع برآن یک و تنها یک خط به موازات خط مذکور وجود دارد که از نقطه مورد نظر می گذرد .

 

اگر ما اصول هندسه را انتزاعهایی از تجربه بدانیم بلافاصله تفاوت این اصل و چهار اصل دیگر مشخص می شود . به هیچ وجه نمی توانیم به طور تجربی تحقیق کنیم که آیا دو خط همدیگر را می برند یا نه .

 

معادلهای اصل 5 :

 

اگر یک خط ، دو خط موازی را قطع کند همه زوایای حاده بوجود امده باهم و همه زوایای منفرجه به وجود آمده باهم مساوی اند .

مجموع زوایای داخلی یک مثلث 180 درجه است .

اگر خطی یک خط موازی را ببرد دیگری را هم می برد.

هرگاه خطی بر یک خط موازی عمود شود بر دیگری نیز عمود می شود .

هرگاه k و l دو خط موازی باشند و m بر k عمود باشد و n بر l عمود باشد آنگاه یا m=n یا m با n موازی است .

 

خود اقلیدس اصل توازی را اینگونه بیان کرده است :

هرگاه خط راستی دو خط راست دیگر را ببرد و مجموع زوایای درونی یک طرف آن خط از دو قائمه کمتر باشد  اگر این خط را امتداد دهیم سر انجام در همان طرفی که مجموع زوایا کمتر از دو قائمه است یکدیگر را می برند .

 

اگر بخواهیم در "اصول " اقلیدس با دیده انتقادی بنگریم متوجه می شویم بسیاری از پیش فرضهای خود را بیان نکرده است از جمله اینکه خط و نقطه وجود دارند ، همه نقطه ها بر یک امتداد نیستند . و هر خط دست کم دو نقطه دارد .

پرداختن به این نکات توسط ریاضیدانان متفاوتی صورت گرفته که شهودی ترین آنها هیلبرت است . هیلبرت معتقد است که چون هیچ یک از خواص نقطه ، خط و صفحه غیر از خواصی که توسط اصول به آنها داده می شوند نمی تواند در استدلالها استفاده شود پس می توانید به هر نامی اینها را نام گذاری کنید هیلبرت خودش می گوید :"آدمی باید همیشه به جای نقطه و خط و صفحه بتواند میز ، صندلی و آبجو بگوید . "

تلاشهای بسیاری برای اثبات این اصل صورت می گیرد که خواجه نصیرالدین طوسی مهمترین آنهاست .

برای اثبات این اصل به اصلی به نام اصل والیس متوسل شده اند که بعدها ثابت می شود همان اصل توازی است : برای هر مثلث دلخواه وهر پاره خط دلخواه، می توان مثلثی روی آن پاره خط بناکرد که متشابه با مثلث اول است .

افرادی به نام لژاندر و بویوئی سعی می کنند اصل را ثابت کنند که بعدها اثبات می شود براهین آنها نادرستند. فرد دیگری به نام ساکری( 1667-1733) که یک کشیش بوده است سعی می کند از نقیض اصل توازی به تناقض برسد وبنابراین با استفاده از برهان خلف درستی آن را ثابت کند  .

ساکری چهارضلعی هایی را مورد بررسی قرار داد که دو زاویه آنها قائمه اندو دو زاویه بالا صرفا قابل انطباق بر یکدیگرند . در این صورت سه حالت پیش می آید :

1-    زاویه های بالایی قائمه اند

2-    زاویه های بالایی  منفرجه اند

3-    زاویه های بالایی حاده اند

کوشید تا نشان دهد 2 و 3 به تناقض می رسند . پس 1 درست است و بنابراین اصل توازی برقرار است .

در مورد زوایای منفرجه به تناقض رسید . اما در مورد زوایای حاده هرچه کوشید نتوانست تناقض بدست بیاورد و آن را "فرض خصمانه زاویه حاده " نامید و موفق شد نتایج بسیار عجیبی بدست آورد اما همه چیز غیر از تناقض ! ساکری می گفت " فرض زاویه حاده مطلقا غلط است چون با ذات خط مستقیم ناسازگار می آید " غافل ا ز اینکه هندسه نا اقلیدسی را کشف کرده است در نهایت کتابی را با عنوان "هندسه اقلیدس عاری از هرگونه نقص " چاپ کرد .

تا آن زمان تلاش برای اثبات اصل پنجم به قدری زیاد بود که فردی برای رساله دکتری  خود در 1763نقایص 28 برهان از آنها را جمع کرده بود و دایره المعارف نویس بزرگ ریاضی دالامبر این وضع را افتضاح هندسه نامید . ( این وضع خیلی به زمان بحران  کوهنی شبیه است . ) ریاضیدانان ، رفته رفته نومید می شدند  .

بویوئی به پسرش نوشت :

" تو نباید برای گام نهادن در راه توازیها تلاش کنی . من پیچ وخمهای این راه را از اول تا آخر آن می شناسم ، این شب بی پایان که همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است سپری کرده ام .  التماس می کنم که دانش موازیها را رها کنی ...."


بنداشت توازی هیلبرت: به ازای هر خط l و هر نقطهٔ p ناواقع بر آن، حداکثر یک خط مانندm وجود دارد چنانکه از p می‌گذرد و با l موازی است

نکته: اصل توازی هیلبرت با اصل پنجم اقلیدس معادل است.


برچسب ها : هندسه اقلیدسی و نا اقلیدسی و بسط ان ماروین گرینبرگ ترجمه مهمد هادی شفیعیها-ماروین گرینبرگ ترجمه مهمد هادی شفیعیها-اقلیدس و هیلبرت-بوبویی-تلاش برای اثبات اصل توازی و ناکامی-اصل توازی هیلبرت-


نوشته شده توسط M R در جمعه 15 دی 1391

نظرات (

  زیبایی ریاضیات-ریاضیات زندگی !
مطالب مرتبط: مطالب ریاضی کاربرد ریاضیات

طبیعت ، سرچشمه زاینده و بیپایانی است برای انگیزه دادن به هنرمند و ریاضیدان. آنها از درون خود و از ایدهها سود میجویند و حقیقت را نه تنها آن گونه که مشاهده میشود، بلکه آن که باید باشد و آرزوی آدمی است، میبینند. هنر و ریاضیات هر دو کمال و ایدهآل را میجویند.

کم نیستند کسانی که ریاضیات را دانشی دشوار و دست نیافتنی و در ضمن خشک و خشن میپندارند و به همین مناسبت ، ریاضیدان و معلم ریاضی را فردی عبوس ، بیاحساس و بیذوق میپندارند و از اینکه کسی که سر و کار و رشتهاش ریاضیات است، اهل ذوق و هنر و شعر و موسیقی باشد و از آن لذت ببرد، متحیر میشوند. آیا به واقع هنر و ریاضیات ، یا به عبارت دیگر ، زیبایی و ظرافت و ریاضی دو مقوله متضاد و دور از هم و ناسازگارند؟ آیا علاقه به ریاضیات و تخصص داشتن در آن ، به معنای بیذوقی ، بیاحساسی و دور بودن از زندگی است؟ انسان ترکیبی از احساس ، عاطفه و تاثیر پذیری از یک طرف و اندیشه و خرد و داوری منطقی از طرف دیگر است.
در واقع انسان ، مجموعهای یگانه از جان و خرد است. احساس و منطق را با هیچ نیرویی نمیتوان از هم جدا کرد. به قول هوشنگ ابتهاج عشق بیفرزانگی ، دیوانگی است. هر انسانی از تماشای چشم انداز یک دامنه سر سبز آرامش مییابد و در عین حال به فکر فرو میرود.شاعر احساس درونی خود را با شعر و نقاش با قلم و بوم بیان میکند. گیاه شناس در پی گیاه مورد نظر خود و زبان شناس در پی یافتن ریشه نامگذاری گیاه و داروشناس در جستجوی ویژگیهای درمانی آن است و ریاضیدان نحوه قرار گرفتن برگ و گلبرگها یا اندازهها و شکلها را مورد مطالعه قرار میدهد. ولی هم گیاه عضوی یگانه است و هم انسان پس علت این گوناگونی در رابطه بین گیاه و انسان ، وجود جنبههای گوناگون و گسترده انسان و تجلی آنها در شرایط مختلفی است.

 تاریخچه ارتباط ریاضیات و هنر :
در دوران رنسانس ، نقاشان بزرگ ، ریاضیدان هم بودند. آلبرتی (۱۴۷۲ - ۱۴۰۴) نخستین نیاز نقاش را هندسه میدانست. او بود که در سال ۱۴۳۵ میلادی ، اولین کتاب را درباره پرسپکتیو نوشت. نقاشان و هنرمندان برای جان دادن به تصویرها و القای فضای سه بعدی به آثار خود ، به ریاضیات روی آورند. بنابراین همه نقاشان دوره رنسانس نظیر آلبرتی ، دیودر ، لیوناردو داوینچی ، ریاضیدانانی هنرمند یا هنرمندانی ریاضیدان بودند. دزارک که خود ، معماری هنرمند بود به خاطر همین نیاز نقاشان و با اثبات قضیهای که به نام خود او معروف است، هندسه تصویری را بنیان نهاد و بعد از آن رفته رفته اصول بیشتری از ریاضیات تایید شد.

   چرا ریاضیات و هنر تا این اندازه به هم نزدیکند؟
طبیعت ، سرچشمه زاینده و بیپایانی است برای انگیزه دادن به هنرمند و ریاضیدان. آنها از درون خود و از ایدهها سود میجویند و حقیقت را نه تنها آن گونه که مشاهده میشود، بلکه آن که باید باشد و آرزوی آدمی است، میبینند. هنر و ریاضیات هر دو کمال و ایدهآل را میجویند.

  ریاضیات کلید طلایی برای زیبایی شناسی :
طبیعت عنصر تقارن را عنوان نشانه زیبایی به هنرمند تلقین میکند و سپس ریاضیدان با کشف قانونمندیهای تقارن به مفاهیم شبه تقارن , تقارن لغزنده میرسد و کوبیسم را به هنرمند (نقاش ، شاعر یا موسیقیدان) تلقین میکند. نغمهها و آواهای موجود در طبیعت الهام دهنده ترانههای هنرمندان بوده و ریاضیدانان با کشف قانونهای ریاضی حاکم بر این نغمهها و تلاش در جهت تغییر و ترکیب آنها گونههای بسیار متفاوت و دل انگیزی در موسیقی آفریدهاند. هر زمان که محاسبه درست ریاضی در نوشتههای ادبی رعایت شده، آثار جالب و ماندگار و نزدیک به واقعیت و قابل قبول برای مخاطب خلق شده است. یکی از نمونههای این مساله رعایت توجه صحیح آندره یه ویچ در افسانه ثروتمند فقیر به محاسبات ریاضی در داستان خود میباشد (البته بدون وارد کردن محاسبات عددی) که آن را به اثری ماندگار و قابل پذیرش تبدیل کرده است. ترسیمهای هندسی و نسبت زرین کمک شایانی به هنرمندان معمار و برج ساز و میکند.

   زیبایی ریاضیات در کجاست؟
در واقع تمامی عرصه ریاضیات سرشار از زیبایی و هنر است. زیبایی ریاضیات را می توان در شیوه بیان موضوع ، در طرز نوشتن و ارایه آن در استدلالهای منطقی آن ، در رابطه آن با زندگی و واقعیت ، در سرگذشت پیدایش و تکامل آن و در خود موضوع ریاضیات مشاهده کرد. یکی از راههای شناخت زیباییهای ریاضیات (بخصوص هندسه) آگاهی بر نحوه پیشرفت و تکامل است. جنبه دیگری از زیبایی ریاضیات این است که با همه انتزاعی بودن خود ، بر همه دانشها حکومت میکند و جز قانونهای آن ، همچون ابزاری نیرومند دانشهای طبیعی و اجتماعی را صیقل میدهد، به پیش میبرد، تفسیر میکند و در خدمت انسان قرار میدهد.

    زیبایی مسایل ریاضی
برای بسیاری از مسایل ریاضی راه حلهای عادی وجود دارد که وقتی اینگونه مسایل را (با این روشها) حل میکنید، هیچ احساس خاصی به شما دست نمیدهد و حتی ممکن است تکرار آن شما را کسل کند. ولی وقتی به مسالهای برمیخورید که همچون دری مستحکم در برابر شما پایداری میکند و از هر سمتی به آن حمله میکنید ناکام میشوید زمانی که ناگهان جرقهای ذهن شما را روشن میکند عجب! پس اینطور! چه زیبا!و مساله حل میشود. در ریاضیات اغلب از اصطلاح زیباترین راه حل یا زیبایی راه حل استفاده میکنیم. ولی چرا یک راه حل مساله ما را تنها قانع و راضی میکند در حالی که دیگری شوق ما را برمیانگیزد و شجاعت فکر و ظرافت روش را آن موجب شگفتی ما میشود؟ راه حل زیبا باید تا حدی ما را به شگفتی وا دارد ولی تنها وجود یک جنبه نامتعارف و غیر عادی زیبایی استدلال ریاضی را روشن نمیکند، بلکه باید عینیت نیز داشته باشد.
هم ریختی نمونه با پدیده مورد نظر و سادگی درک نمونه و سادگی کار کردن با آن ، مفهوم عینی بودن را تشکیل میدهد. با بکار گرفتن عینیت ، زبان دشوار پدیده را به زبان سادهتر مدل عینی ترجمه میکنیم و نتایج لازم را بدست میآوریم.وقتی که دانش آموزی میخواهد به تنهایی مساله دشواری را حل کند نمونه عینی پدیدهای را باید در مساله شرح دهد، برای خودش بسازد، دشواری مسالههای نامتعارف در این هست که برای حل آنها باید بطور مستقل نمونه همریخت (مساله هم ارز) را انتخاب کرد به نحوی که از پدیده نخستین سادهتر باشد. نامتعارف بودن این نمونه و نامنتظر بودن آن به معنای زیبایی و ظرافت راه حل است. زیبایی حل یک مساله را وقتی احساس میکنیم که به کمک یک نمونه عینی بدست آید و در ضمن نامنتظر باشد که بطور مستقیم به ذهن هر کسی نمیرسد و به زحمت در دسترس قرار میگیرد.

   رابطه زیباشناسی ریاضی
نامنتظر بودن + عینی بودن = زیبایی
این رابطه به فرهنگ ریاضی مربوط میشود و کسی که چنین فرهنگی دارد، دید گستردهتری دارد، با کمترین نشانهها ، شباهت بین زمینههای مختلف ریاضی را پیدا میکند و به کشف رابطه بین آنها و فرمولبندی و استفاده از روابط گوناگون بین آنها میپردازد. و بدین ترتیب مساله را نامتعارفتر و زیباتر از بقیه حل میکند و با سادهترین و کوتاهترین و در عین حال جالبترین روش به جواب مساله میرسد و موجب شگفتی و لذت خود و بقیه میگردد.


برچسب ها : ریاضیات زیبا-زیبایی ریاضیات-رابطه زیباشناسی ریاضی-زیبایی مسایل ریاضی-چرا ریاضیات و هنر تا این اندازه به هم نزدیکند؟-


نوشته شده توسط M R در یکشنبه 10 دی 1391

نظرات (

  هرم و عجایب ان
مطالب مرتبط: عجایب ریاضی مطالب ریاضی

محققانی كه در مورد اهرام مصر تحقیق می كنند مشاهده كرده اند كه مواد غذایی فاسد شدنی از قبیل گوشت، شیر و تخم مرغ ؛ در داخل اهرام مصر ماهها وحتی گاهی سا لها بدون هیچ گونه فسادی باقی خواهد ماند ؛ خوردن آنها برای انسان خطری ندارد شاید هرم خئوپس كهن ترین بنای عظیمی باشد كه به دست انسان بنا شده و نا امروز باقی مانده است . این هرم در كنار پیكره ابوالهول در منطقه جیزه در 16 كیلومتری غرب قاهره در مصر قرار دارد . وسعت كل محل 216 كیلومتر مربع و سطح زیر بنای آن 13 جریب ( معادل 50000 متر مربع )است .

سطح زیر بنای هرم با دقتی باور نكردنی تسطیح شده است . به طوری كه اختلاف سطح آن در سرتاسر زیر بنا از چند میلیمتر تجاوز نمی كند .برخی این اختلاف را ناشی از زمین لرزه ها و آتشفشانها و حركات زمین می دانند . در ساختمان این هرم دو میلیون و ششصد هزار قطعه سنگ ساختمانی از جنس گرانیت و مرمر به وزن 2 تا 70 تن به كار رفته است این سنگها كه به دقت فوق العاده زیادی روی هم چیده شده بنایی به ارتفاع 140 متر را تشكیل داده است .در كنار این هرم دو هرم دیگری وجود دارد كه یكی به كفرن جانشین خئو پس و دیگری به مایكونیوس جانشین كفرن تعلق دارد به این سه هرم اهرام ثلاثه می كویند .شش هرم كوچك دیگر كه ظاهراً برای زنان ودختران آنها ساخته شده است در جوار اهرام ثلاثه مجتمع اهرام را به وجود آورده اند .

گوشه ای از عجایب داخل هرم
- كنی هیل گیاهی را به مدت پنج روز بدون آب داخل هرم نگهداری كرد .زمانی كه گیاه را كاملاً تازه و شاداب بود از هرم قارچ كرد بلافاصله پژمرده شد .
- اگر بذر گوجه فرنگی داخل هرم كشت شودو سپس نشای آن در بیرون كاشته شود و محصول آن چند برابر بوته های مشابه می شود.
- شیر كه به سرعت فاسد می شود . بیش از یك هفته در هرم سالم و قابل استفاده باقی می ماند اما در غلظت آن تغیراتی حاصل می شود. این امر دو شركت بزرگ ایتالیایی و فرانسوی را بر آن داشته است كه پاكتهای مقوایی شیر را به صورت هرم به بازار عرضه كنند .
- اگر مقداری آب چند هفته در هرم قرار گیرد به آبی فعال به خواص عجیب تبدیل می گردد. برای مثال ، اگر آب آلوده باشد بعد از این مدت كاملاُ ضد عفونی می شود . دست دختر چهارده ساله كه در حادثه ای به شدت آسیب دیده بود ، بعد از سی دقیقه قرار گرفتن در این آب از درد افتاد و بعد از دو روز بهبود پیدا كرد خانمی به نام پتی با استفاده مكرر از این آب چهره ای جوان و شاداب تر یافته است
- گوشت در داخل هرمهایی با ابعاد اهرام مصر و یا متناسب با آنها ، با وجود آن كه دو سوم از آب خود را از دست می دهد هرگز فاسد نمی شود .
- آزمایشهای مكرر نشان داده كه تیغ صورت تراشی درداخل هرم تیز میشود ! چنان كه حتی گاه تا 200 بار می توان از یك تیغ برای اصلاح صورت استفاده كرد . ممكن است برای شما خواننده عزیز این سئوال پیش بیاید كه چرا از خواص هرم بهره نمی گیرند در پاسخ به چند نمونه اشاره می كنیم :
1-بعضی از كشور ها ساختمانهای هرمی شكل برای هدفهای متفاوت ساخته اند.
2-بیمارستانهایی برای بهبود سریع تر بیماران روانی.
3-كلیسا برای تمركز معنویت بشر .
4- اتاقهایی در دانشگاهها بر ای استراحت و تمركز اندیشه و فعالیت بهتر مغز.
محاسبات بسیار پیچیده ریاضی در سطح قاعده وهرم اعجاب برانگیز است . جالب اینجاست كه از طریق هرم می توان شمال و جنوب مغناطیسی را یافت.


برچسب ها : عجایب ریاضی-عجایب هرم-هرم شگفت انگیز-


نوشته شده توسط M R در یکشنبه 10 دی 1391

نظرات (

  مجموعه متناهی با اندازه نامعلوم
مطالب مرتبط: مبانی علوم ریاضی مطالب ریاضی
سؤال جالبی در کتاب نظریه مجموعهها (نوشته: واتسلاو سرپینسکی) بود که به نظر غیرممکن میآید ولی جواب دارد.

مجموعهای متناهی مثل A­ را بیابید که نتوان هیچ عدد طبیعی معینی را یافت که از تعداد اعضای A بیشتر باشد.

درصدد رد کردن صورت مسأله نباشید سؤال دارای جواب هست. برای مشاهده جواب به دنباله مطلب مراجعه نمایید.....

برچسب ها : نظریه مجموعه ها-دانلود کتاب-واتسلاو سرپینسکی-


نوشته شده توسط M R در جمعه 8 دی 1391

نظرات ( ادامه مطلب

 

مطالب پیشین

» بازی انلاین ریاضی/جورچین جمع اعداد ریاضی
» کلاس NP و NP-complete ها به همراه پاور پوینت ارائه شده توسط خودم + یک کلیپ آموزشی
» منابع کنکور کارشناسی ارشد ریاضی سال 93+تغییرات
» جزوه تایپ شده معادلات دیفرانسیل
» دانلود کتاب توپولوژِی ترجمه شده به زبان فارسی - توپولوژی نخستین درس مانکرز
» نظریه آشوب :
» سوالات ازمون ارشد 92
» تفاوت رشته ریاضی محض و ریاضی کاربردی و وضعیت انها در اینده
» منابع کنکور کارشناسی ارشد ریاضی
» اثباتی جالب و بسیار اسان برای پارادکس راسل
» درسنامه ترکیبیات - ریاضی 2
» دانلود کتاب انالیز ریاضی pugh (پیو) به زبان لاتین ! فوق العاده !
» یادگیری انتگرال -جزوه انتگرال-انتگرال خور -شیوه های انتگرال گیری
» دانلود کتاب توابع یک متغیره جان بی کانوی Conway جلد اول و دوم+حل المسائل جلد اول کانوی
» اصول اقلیدس و اصل توازی
» مقاله هندسه -هندسه دوجینی و موسیقی
» زیبایی ریاضیات-ریاضیات زندگی !
» هرم و عجایب ان
» روش های طلایی درس خواندن ! موفقیت در فهم مطالب و به یادسپاری انها
» مطالعه به روش PQRST
» مجموعه متناهی با اندازه نامعلوم
» تعاریفی از همنهشتی و تئوری اعداد + مثال
» اولین هیولای دنیا - اولین مانستر تراک الکتریکی جهان به همراه فیلم
» عجیب ترین نشانه های هوش بالا
» بدون شرح ! عدد 9
» تبلیغ چاپی فوق‌العاده جالب پژو برای کیسه هوا+کلیپ انلاین
» BENZ 2014
» ۱۰ خودرو مفهومی‌که هرگز پایشان به خط تولید باز نشد!
» شتاب 0 تا 100 در کمتر از 2 ثانیه (1.8) نسل جدید بوگاتی !
» معما و تست هوش- روزهای هفته

» لیست کامل مطالب ارسالی


 

( تعداد کل صفحات: 7 )

1 2 3 4 5 6 7

 
  درباره


در این وب دانلود رایگان کتب،جزوات و نرم افزارهای ریاضی برای مقاطع راهنمایی،دبیرستان،کارشناسی ، کارشناسی ارشد و دکترا قرار می گیرد و هم چنین برای یکنواخت نشدن وب اخبار و اطلاعات کم یاب و بی نظیری قرار داده شده است،که به شما پیشنهاد می شود این قسمت ها را نیز از دست ندهید....!


از سخنان امام علی (ع):

مراقب افکارت باش که گفتارت می‌شود

مراقب گفتارت باش که رفتارت می‌شود

مراقب رفتارت باش که عادتت می‌شود

مراقب عادتت باش که شخصیتت می‌شود

مراقب شخصیتت باش که سرنوشتت می‌شود.


مدیر وبلاگ: M R



  نظرسنجی
کدام برند ؟








  پیوند های روزانه

شخصی
کریستال فونیکس
ریاضیات
انجمن علمی ریاضی دانشگاه صنعتی جندی شاپور
ریاضیـــــــــــــــــــــــات
کتب ریاضی رایگان
تحقیق در عملیات
Google.com
ALEXA.com
کلیک نکن
بازی های انلاین ریاضی
زبان انگلیسی
فرشته یخی
اموزش زبان انگلیسی
ریاضیات الفبای کتاب آفرینش
سرگرمی و خنده
مطالب علمی
شگفتی های ریاضی
با ستاره ها
المپیاد ریاضی
الف مثل المپیاد
MATHKHOONEH
دست نوشته های یک جبریست
دایرکتوری سایت های اموزشی
ریاضی دبیرستان و دانشگاه
رشته های شاخه های ریاضی
سرگرمی های ریاضی
دیدنی ها
اشتی با ریاضی
مباحث متنوع در ریاضی
دست نوشته های یک معلم
دانشجویان ریاضی
ما نه نفر(بچه های ریاضی)
جذابیت های ریاضی
کانون اموزش ریاضیات
ریاضیات دروازه و کلید علوم
دانلود کتب دانشگاه و دبیرستان
دانلود کتب و جزوات ریاضی

.:: لیست کامل پیوندهای روزانه ::.

.:: ارسال پیوند ::.


  آمار بازدید

نویسندگان :
» M R

آمار بازدید :
» تعداد مطالب :
» تعداد نویسندگان :
» آخرین بروز رسانی :
» بازدید امروز :
» بازدید دیروز :
» بازدید این ماه :
» بازدید ماه قبل :
» بازدید کل :
» آخرین بازدید :


 

صفحه اصلی |  پست الکترونیک |  اضافه به علاقه مندی ها | ذخیره صفحه | طراح قالب


Powered By mihanblog.com Copyright © 2009 by mathbook
Design By : wWw.Theme-Designer.Com