تبلیغات
دانلود رایگان کتاب های ریاضی، جزوه ریاضی ، تفریحی ، بازی،سرگرمی ، سخن بزرگان - زیبایی ریاضیات-ریاضیات زندگی !

شارژ ایرانسل

فال حافظ

  ..  
   
   
  منوی اصلی
لینکهای سریع

  موضوعات
بازی انلاین ریاضی
توایع مختلط
روشهای مطالعه
فیلم و کلیپ
ابتدایی
خودرو
مشخصات فنی خودرو
+ریاضی راهنمایی+
سرگرمی و ریاضی
بازی های جالب انلاین ریاضی+
ازدواج
سبک زندگی
تست روانشناسی
آموزشی
دکتری
نمونه کارنامه
منابع و دروس رشته ها برای ارشد
هوش
جملات الهام بخش
پزشکی
تکنولوژی و ای تی
انیمیشن
خواندنی های جالب
عاشقانه
زنگ تفریح(اخبار و اطلاعات)
زنگ تفریح ریاضی(خنده بازار)
عکسسسسس WOW
المپیاد
تحقیق در عملیات
++دبیرستان++
حساب دیفرانسیل و انتگرال
معادلات دیفرانسیل
ریاضی مهندسی
ریاضی عمومی
مبانی علوم ریاضی
فلسفه ریاضی
آنالیز مختلط
انالیز ریاضی
انالیز حقیقی
آنالیز عددی
ریاضیات گسسته
ترکیبیات
نظریه گراف
نظریه اعداد
امار و احتمال
هندسه
هندسه هذلولوی
جبر
جبر مجرد
توپولوژی
مفاهیم پایه ریاضی
معماهای ریاضی
فرمول های ریاضی
مثلثات
مقالات ریاضی
دانسنی های ریاضی
کاربرد ریاضیات
رشته ریاضی
نرم افزار های ریاضی
عجایب ریاضی
مطالب ریاضی
اموزش نرم افزار های ریاضی
++کنکور++
نرم افزار موبایل
ازمون های بین المللی
سری فوریه و تبدیل لاپلاس
جملات مشاهیر و بزرگان
سوالات ریاضی دوستان

 

آرشیو ماهانه
تیر 1395
دی 1392
شهریور 1392
تیر 1392
خرداد 1392
اسفند 1391
بهمن 1391
دی 1391
آذر 1391
آبان 1391
مهر 1391
شهریور 1391

.:: لیست کامل آرشیو ماهانه ::.


        لینک دوستان

  زیبایی ریاضیات-ریاضیات زندگی !
مطالب مرتبط: مطالب ریاضی کاربرد ریاضیات

طبیعت ، سرچشمه زاینده و بیپایانی است برای انگیزه دادن به هنرمند و ریاضیدان. آنها از درون خود و از ایدهها سود میجویند و حقیقت را نه تنها آن گونه که مشاهده میشود، بلکه آن که باید باشد و آرزوی آدمی است، میبینند. هنر و ریاضیات هر دو کمال و ایدهآل را میجویند.

کم نیستند کسانی که ریاضیات را دانشی دشوار و دست نیافتنی و در ضمن خشک و خشن میپندارند و به همین مناسبت ، ریاضیدان و معلم ریاضی را فردی عبوس ، بیاحساس و بیذوق میپندارند و از اینکه کسی که سر و کار و رشتهاش ریاضیات است، اهل ذوق و هنر و شعر و موسیقی باشد و از آن لذت ببرد، متحیر میشوند. آیا به واقع هنر و ریاضیات ، یا به عبارت دیگر ، زیبایی و ظرافت و ریاضی دو مقوله متضاد و دور از هم و ناسازگارند؟ آیا علاقه به ریاضیات و تخصص داشتن در آن ، به معنای بیذوقی ، بیاحساسی و دور بودن از زندگی است؟ انسان ترکیبی از احساس ، عاطفه و تاثیر پذیری از یک طرف و اندیشه و خرد و داوری منطقی از طرف دیگر است.
در واقع انسان ، مجموعهای یگانه از جان و خرد است. احساس و منطق را با هیچ نیرویی نمیتوان از هم جدا کرد. به قول هوشنگ ابتهاج عشق بیفرزانگی ، دیوانگی است. هر انسانی از تماشای چشم انداز یک دامنه سر سبز آرامش مییابد و در عین حال به فکر فرو میرود.شاعر احساس درونی خود را با شعر و نقاش با قلم و بوم بیان میکند. گیاه شناس در پی گیاه مورد نظر خود و زبان شناس در پی یافتن ریشه نامگذاری گیاه و داروشناس در جستجوی ویژگیهای درمانی آن است و ریاضیدان نحوه قرار گرفتن برگ و گلبرگها یا اندازهها و شکلها را مورد مطالعه قرار میدهد. ولی هم گیاه عضوی یگانه است و هم انسان پس علت این گوناگونی در رابطه بین گیاه و انسان ، وجود جنبههای گوناگون و گسترده انسان و تجلی آنها در شرایط مختلفی است.

 تاریخچه ارتباط ریاضیات و هنر :
در دوران رنسانس ، نقاشان بزرگ ، ریاضیدان هم بودند. آلبرتی (۱۴۷۲ - ۱۴۰۴) نخستین نیاز نقاش را هندسه میدانست. او بود که در سال ۱۴۳۵ میلادی ، اولین کتاب را درباره پرسپکتیو نوشت. نقاشان و هنرمندان برای جان دادن به تصویرها و القای فضای سه بعدی به آثار خود ، به ریاضیات روی آورند. بنابراین همه نقاشان دوره رنسانس نظیر آلبرتی ، دیودر ، لیوناردو داوینچی ، ریاضیدانانی هنرمند یا هنرمندانی ریاضیدان بودند. دزارک که خود ، معماری هنرمند بود به خاطر همین نیاز نقاشان و با اثبات قضیهای که به نام خود او معروف است، هندسه تصویری را بنیان نهاد و بعد از آن رفته رفته اصول بیشتری از ریاضیات تایید شد.

   چرا ریاضیات و هنر تا این اندازه به هم نزدیکند؟
طبیعت ، سرچشمه زاینده و بیپایانی است برای انگیزه دادن به هنرمند و ریاضیدان. آنها از درون خود و از ایدهها سود میجویند و حقیقت را نه تنها آن گونه که مشاهده میشود، بلکه آن که باید باشد و آرزوی آدمی است، میبینند. هنر و ریاضیات هر دو کمال و ایدهآل را میجویند.

  ریاضیات کلید طلایی برای زیبایی شناسی :
طبیعت عنصر تقارن را عنوان نشانه زیبایی به هنرمند تلقین میکند و سپس ریاضیدان با کشف قانونمندیهای تقارن به مفاهیم شبه تقارن , تقارن لغزنده میرسد و کوبیسم را به هنرمند (نقاش ، شاعر یا موسیقیدان) تلقین میکند. نغمهها و آواهای موجود در طبیعت الهام دهنده ترانههای هنرمندان بوده و ریاضیدانان با کشف قانونهای ریاضی حاکم بر این نغمهها و تلاش در جهت تغییر و ترکیب آنها گونههای بسیار متفاوت و دل انگیزی در موسیقی آفریدهاند. هر زمان که محاسبه درست ریاضی در نوشتههای ادبی رعایت شده، آثار جالب و ماندگار و نزدیک به واقعیت و قابل قبول برای مخاطب خلق شده است. یکی از نمونههای این مساله رعایت توجه صحیح آندره یه ویچ در افسانه ثروتمند فقیر به محاسبات ریاضی در داستان خود میباشد (البته بدون وارد کردن محاسبات عددی) که آن را به اثری ماندگار و قابل پذیرش تبدیل کرده است. ترسیمهای هندسی و نسبت زرین کمک شایانی به هنرمندان معمار و برج ساز و میکند.

   زیبایی ریاضیات در کجاست؟
در واقع تمامی عرصه ریاضیات سرشار از زیبایی و هنر است. زیبایی ریاضیات را می توان در شیوه بیان موضوع ، در طرز نوشتن و ارایه آن در استدلالهای منطقی آن ، در رابطه آن با زندگی و واقعیت ، در سرگذشت پیدایش و تکامل آن و در خود موضوع ریاضیات مشاهده کرد. یکی از راههای شناخت زیباییهای ریاضیات (بخصوص هندسه) آگاهی بر نحوه پیشرفت و تکامل است. جنبه دیگری از زیبایی ریاضیات این است که با همه انتزاعی بودن خود ، بر همه دانشها حکومت میکند و جز قانونهای آن ، همچون ابزاری نیرومند دانشهای طبیعی و اجتماعی را صیقل میدهد، به پیش میبرد، تفسیر میکند و در خدمت انسان قرار میدهد.

    زیبایی مسایل ریاضی
برای بسیاری از مسایل ریاضی راه حلهای عادی وجود دارد که وقتی اینگونه مسایل را (با این روشها) حل میکنید، هیچ احساس خاصی به شما دست نمیدهد و حتی ممکن است تکرار آن شما را کسل کند. ولی وقتی به مسالهای برمیخورید که همچون دری مستحکم در برابر شما پایداری میکند و از هر سمتی به آن حمله میکنید ناکام میشوید زمانی که ناگهان جرقهای ذهن شما را روشن میکند عجب! پس اینطور! چه زیبا!و مساله حل میشود. در ریاضیات اغلب از اصطلاح زیباترین راه حل یا زیبایی راه حل استفاده میکنیم. ولی چرا یک راه حل مساله ما را تنها قانع و راضی میکند در حالی که دیگری شوق ما را برمیانگیزد و شجاعت فکر و ظرافت روش را آن موجب شگفتی ما میشود؟ راه حل زیبا باید تا حدی ما را به شگفتی وا دارد ولی تنها وجود یک جنبه نامتعارف و غیر عادی زیبایی استدلال ریاضی را روشن نمیکند، بلکه باید عینیت نیز داشته باشد.
هم ریختی نمونه با پدیده مورد نظر و سادگی درک نمونه و سادگی کار کردن با آن ، مفهوم عینی بودن را تشکیل میدهد. با بکار گرفتن عینیت ، زبان دشوار پدیده را به زبان سادهتر مدل عینی ترجمه میکنیم و نتایج لازم را بدست میآوریم.وقتی که دانش آموزی میخواهد به تنهایی مساله دشواری را حل کند نمونه عینی پدیدهای را باید در مساله شرح دهد، برای خودش بسازد، دشواری مسالههای نامتعارف در این هست که برای حل آنها باید بطور مستقل نمونه همریخت (مساله هم ارز) را انتخاب کرد به نحوی که از پدیده نخستین سادهتر باشد. نامتعارف بودن این نمونه و نامنتظر بودن آن به معنای زیبایی و ظرافت راه حل است. زیبایی حل یک مساله را وقتی احساس میکنیم که به کمک یک نمونه عینی بدست آید و در ضمن نامنتظر باشد که بطور مستقیم به ذهن هر کسی نمیرسد و به زحمت در دسترس قرار میگیرد.

   رابطه زیباشناسی ریاضی
نامنتظر بودن + عینی بودن = زیبایی
این رابطه به فرهنگ ریاضی مربوط میشود و کسی که چنین فرهنگی دارد، دید گستردهتری دارد، با کمترین نشانهها ، شباهت بین زمینههای مختلف ریاضی را پیدا میکند و به کشف رابطه بین آنها و فرمولبندی و استفاده از روابط گوناگون بین آنها میپردازد. و بدین ترتیب مساله را نامتعارفتر و زیباتر از بقیه حل میکند و با سادهترین و کوتاهترین و در عین حال جالبترین روش به جواب مساله میرسد و موجب شگفتی و لذت خود و بقیه میگردد.


برچسب ها : ریاضیات زیبا-زیبایی ریاضیات-رابطه زیباشناسی ریاضی-زیبایی مسایل ریاضی-چرا ریاضیات و هنر تا این اندازه به هم نزدیکند؟-


نوشته شده توسط M R در یکشنبه 10 دی 1391

نظرات (

 

مطالب پیشین

» بازی انلاین ریاضی/جورچین جمع اعداد ریاضی
» کلاس NP و NP-complete ها به همراه پاور پوینت ارائه شده توسط خودم + یک کلیپ آموزشی
» منابع کنکور کارشناسی ارشد ریاضی سال 93+تغییرات
» جزوه تایپ شده معادلات دیفرانسیل
» دانلود کتاب توپولوژِی ترجمه شده به زبان فارسی - توپولوژی نخستین درس مانکرز
» نظریه آشوب :
» سوالات ازمون ارشد 92
» تفاوت رشته ریاضی محض و ریاضی کاربردی و وضعیت انها در اینده
» منابع کنکور کارشناسی ارشد ریاضی
» اثباتی جالب و بسیار اسان برای پارادکس راسل
» درسنامه ترکیبیات - ریاضی 2
» دانلود کتاب انالیز ریاضی pugh (پیو) به زبان لاتین ! فوق العاده !
» یادگیری انتگرال -جزوه انتگرال-انتگرال خور -شیوه های انتگرال گیری
» دانلود کتاب توابع یک متغیره جان بی کانوی Conway جلد اول و دوم+حل المسائل جلد اول کانوی
» اصول اقلیدس و اصل توازی
» مقاله هندسه -هندسه دوجینی و موسیقی
» زیبایی ریاضیات-ریاضیات زندگی !
» هرم و عجایب ان
» روش های طلایی درس خواندن ! موفقیت در فهم مطالب و به یادسپاری انها
» مطالعه به روش PQRST
» مجموعه متناهی با اندازه نامعلوم
» تعاریفی از همنهشتی و تئوری اعداد + مثال
» اولین هیولای دنیا - اولین مانستر تراک الکتریکی جهان به همراه فیلم
» عجیب ترین نشانه های هوش بالا
» بدون شرح ! عدد 9
» تبلیغ چاپی فوق‌العاده جالب پژو برای کیسه هوا+کلیپ انلاین
» BENZ 2014
» ۱۰ خودرو مفهومی‌که هرگز پایشان به خط تولید باز نشد!
» شتاب 0 تا 100 در کمتر از 2 ثانیه (1.8) نسل جدید بوگاتی !
» معما و تست هوش- روزهای هفته

» لیست کامل مطالب ارسالی


  درباره


در این وب دانلود رایگان کتب،جزوات و نرم افزارهای ریاضی برای مقاطع راهنمایی،دبیرستان،کارشناسی ، کارشناسی ارشد و دکترا قرار می گیرد و هم چنین برای یکنواخت نشدن وب اخبار و اطلاعات کم یاب و بی نظیری قرار داده شده است،که به شما پیشنهاد می شود این قسمت ها را نیز از دست ندهید....!


از سخنان امام علی (ع):

مراقب افکارت باش که گفتارت می‌شود

مراقب گفتارت باش که رفتارت می‌شود

مراقب رفتارت باش که عادتت می‌شود

مراقب عادتت باش که شخصیتت می‌شود

مراقب شخصیتت باش که سرنوشتت می‌شود.


مدیر وبلاگ: M R



  نظرسنجی
کدام برند ؟








  پیوند های روزانه

شخصی
کریستال فونیکس
ریاضیات
انجمن علمی ریاضی دانشگاه صنعتی جندی شاپور
ریاضیـــــــــــــــــــــــات
کتب ریاضی رایگان
تحقیق در عملیات
Google.com
ALEXA.com
کلیک نکن
بازی های انلاین ریاضی
زبان انگلیسی
فرشته یخی
اموزش زبان انگلیسی
ریاضیات الفبای کتاب آفرینش
سرگرمی و خنده
مطالب علمی
شگفتی های ریاضی
با ستاره ها
المپیاد ریاضی
الف مثل المپیاد
MATHKHOONEH
دست نوشته های یک جبریست
دایرکتوری سایت های اموزشی
ریاضی دبیرستان و دانشگاه
رشته های شاخه های ریاضی
سرگرمی های ریاضی
دیدنی ها
اشتی با ریاضی
مباحث متنوع در ریاضی
دست نوشته های یک معلم
دانشجویان ریاضی
ما نه نفر(بچه های ریاضی)
جذابیت های ریاضی
کانون اموزش ریاضیات
ریاضیات دروازه و کلید علوم
دانلود کتب دانشگاه و دبیرستان
دانلود کتب و جزوات ریاضی

.:: لیست کامل پیوندهای روزانه ::.

.:: ارسال پیوند ::.


  آمار بازدید

نویسندگان :
» M R

آمار بازدید :
» تعداد مطالب :
» تعداد نویسندگان :
» آخرین بروز رسانی :
» بازدید امروز :
» بازدید دیروز :
» بازدید این ماه :
» بازدید ماه قبل :
» بازدید کل :
» آخرین بازدید :


 

صفحه اصلی |  پست الکترونیک |  اضافه به علاقه مندی ها | ذخیره صفحه | طراح قالب


Powered By mihanblog.com Copyright © 2009 by mathbook
Design By : wWw.Theme-Designer.Com